Simultaneous Magnetic and Charge Doping of Topological Insulators with Carbon

Lei Shen,^{1, *} Minggang Zeng,¹ Yunhao Lu,² Ming Yang,¹ and <u>Yuan Ping Feng^{1,†}</u>

¹Department of Physics, National University of Singapore, Singapore ²Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China *shenlei@nus.edu.sg, [†]phyfyp@nus.edu.sg

To enable many applications of topological insulators, it is necessary to open a surface energy gap and keep the Fermi energy inside the bulk gap. A two-step doping process, magnetic followed by charge or vice versa, is required to produce insulating massive surface states in topological insulators. Using first-principles calculations based on density functional theory, we demonstrate here simultaneous magnetic and hole doping achieved with a single dopant, carbon, in Bi₂Se₃. Carbon substitution for Se (C_{Se}) results in an opening of a sizable surface Dirac gap (up to 85 meV), while the Fermi level (E_F) remains inside the bulk gap and close to the Dirac point at moderate doping concentrations. This *one-step* approach is possible because carbon doping simultaneously introduces localized spin moments and holes. The strong localization of 2*p* states of C_{Se} favors spontaneous spin polarization via a *p-p* interaction and formation of ordered magnetic moments mediated by the surface states. This dual function of carbon doping suggests a simple and effective way to realize insulating massive topological surface states.

Keywords: topological insulator, first-principles calculation, Bi₂Si₃, carbon-doping